Prediction Models for Annual U.S. Hurricane Counts
نویسندگان
چکیده
The authors build on their efforts to understand and predict coastal hurricane activity by developing statistical seasonal forecast models that can be used operationally. The modeling strategy uses May–June averaged values representing the North Atlantic Oscillation (NAO), the Southern Oscillation index (SOI), and the Atlantic multidecadal oscillation to predict the probabilities of observing U.S. hurricanes in the months ahead (July–November). The models are developed using a Bayesian approach and make use of data that extend back to 1851 with the earlier hurricane counts (prior to 1899) treated as less certain relative to the later counts. Out-of-sample hindcast skill is assessed using the mean-squared prediction error within a hold-one-out cross-validation exercise. Skill levels are compared to climatology. Predictions show skill above climatology, especially using the NAO SOI and the NAO-only models. When the springtime NAO values are below normal, there is a heightened risk of U.S. hurricane activity relative to climatology. The preliminary NAO value for 2005 is 0.565 standard deviations so the NAO-only model predicts a 13% increase over climatology of observing three or more U.S. hurricanes.
منابع مشابه
Replicating annual North Atlantic hurricane activity 1878–2012 from environmental variables
Statistical models can replicate annual North Atlantic hurricane activity from large-scale environmental field data for August and September, the months of peak hurricane activity. We assess how well the six environmental fields used most often in contemporary statistical modeling of seasonal hurricane activity replicate North Atlantic hurricane numbers and Accumulated Cyclone Energy (ACE) over...
متن کاملYear-ahead prediction of US landfalling hurricane numbers
We present a simple method for the year-ahead prediction of the number of hurricanes making landfall in the US. The method is based on averages of historical annual hurricane numbers, and we perform a backtesting study to find the length of averaging window that would have given the best predictions in the past.
متن کاملTime Series Models to Predict the Monthly and Annual Consumption of Natural Gas in Iran
Considering the fact that natural gas is a widely used energy source, the prediction of its consumption can be useful (Derek LAM, 2013). As Iran has one of the largest gas reserves in the world, its consumption in the country can affect the worldwide price of gas, Therefore, the current research is useful both from economic and environmental point of view. ...
متن کاملTime Series Models to Predict the Monthly and Annual Consumption of Natural Gas in Iran
Considering the fact that natural gas is a widely used energy source, the prediction of its consumption can be useful (Derek LAM, 2013). As Iran has one of the largest gas reserves in the world, its consumption in the country can affect the worldwide price of gas, Therefore, the current research is useful both from economic and environmental point of view. ...
متن کاملHurricane Katrina's carbon footprint on U.S. Gulf Coast forests.
Hurricane Katrina's impact on U.S. Gulf Coast forests was quantified by linking ecological field studies, Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) image analyses, and empirically based models. Within areas affected by relatively constant wind speed, tree mortality and damage exhibited strong species-controlled gradients. Spatially explicit forest disturbance maps couple...
متن کامل